Hierarchically Structured Inorganic-Inorganic Nanocomposites Formed in Silica Hydrogels

Emily Asenath-Smith and Lara A. Estroff

Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853

Crystal Growth in Hydrogels

Biominerals (e.g., shells) are 'single crystal' organic-inorganic nanocomposites that form in a hydrogel-like matrix,1 which is used as a synthesis model.

These composite structures have unique properties and length scales that meet the dimensions needed in solar and thermoelectric materials

. Addadi, D. Joester, F. Nudelman, S. Weiner, Chem. A. Eur. J 2006, 12, 981

Mesocrystals

'Single crystal' nature of seashells results from the coop-

erative alignment of crystalline subunits also called

mesocrystals -- crystallpgraphic registry maintained.

BACKGROUND

Hematite, α-Fe₂O₃

Hematite has a hexagonal lattice (R-3c)but forms hierarchically structured, pseudocubic crystals.

visible range band gap, applications to photocatalysis.

3. T. Sugimoto, A. Muramatsu, K. Sakata, D. Shindo, J. Coll. Int. Sci. 1993, 158, 420.

Solution (Hydrothermal) Growth Method

Hydrolysis of iron (III) chloride under acidic conditions is known to form

4. M. Ohmori, E. Matejevic, J. Coll. Int. Sci. 1993, 160, 288

Silica Hydrogel Preparation

Sodium metasilicate nonahydrate solutions will gel upon addition of acid

 $Na_2SiO_3 + 2HCl \rightarrow SiO_2 + 2NaCl + H_2O$

Gel times are strongly dependent on pH (amount of acid used) and weakly dependent on the concentration of sodium metasilicate in solution

Pore structure depends on pH/gel time and concentration of socium metasilicate in

As an inorganic hydrogel, silica has thermal stability for hydrothermal conditions

Porous, cellular microstructure of (freeze-dried) silica hydrogel (0.25 M Na₂SiO₃ and 0.5 M HCl)

Hematite Growth in Silica Hydrogel

Iron (III) oxides have a wide pH range of stability in aqueous synthesis at elevated temperature Acidified Na₃SiO₃ hydrogels form a pH compatible growth matrix for iron (III) oxides

RESULTS: MORPHOLOGY

Rotation Under Cross-polarized Light

Rotation of both solution (shown above) and hydrogel grown particles under cross polarized light shows both poly and single crystal signatures:

A maltese cross surrounds the brightly light red cores, which blink upon rotation under cross-polarized light.

SOLUTION

Hematite spheres formed within the gel network Both solution and gel-grown hema-

microscope

cubes formed in

tite show rough

surface textures

characteristic of

models

HYDROGEL

HIERARCHICAL STRUCTURE OF COMPOSITES

Sherrer analysis of X-ray patterns (shown left) shows both solution and hydrogel grown particles are composed of subunits.

Sol'n grown Gel grown crystallite crystallite twosize (Å) theta size (Å) size (%) 33.1 53.9 196

Scherrer Analysis of Subunit Size

Main reduction in subunit size upon growth in gel is related to the {104} (which is the related to plate-like structures²), and may imply that the subunits change to more needle-like upon growth in the gel.

ETCHING STUDIES

Etching studies conducted with 1 M NaOH to selectively dissolve silica gel.

The etching has no effect on solution grown particles, but reveals the ordered internal structure of hematite grown in silica hydrogel.

FESEM of gel-grown hematite spheresafter 5 d exposure to NaOH

reveal composite, hierarchical structure

FESEM of etched particle surface shows bundled rods within a matrix

raction (inset) w/ hexagonal symmetry

CONCLUSIONS

Hierarchically structured (mesocrystals) of hematite with single crystal characteristics can be formed by a hydrothermal synthesis in silica hydrogel.

As a growth matrix, silica hydrogel can be used to modify the morphology and hierarchical structure of the subunits that compose the hematite mesocrystals.

The hematite-silica nanocomposites both have length scales < 100 nm and crystallographic registry, satisfying the structural goals set forth in this work.

FUTURE DIRECTIONS

Characterize internal structure: obtain both chemical information on composite structure and crystallographic information on subunit assembly within the hematite-silica nanocomposites.

Use the experimental variables of hydrogel density and growth rate to manipulate size, aspect ratio and assembly of subunits in hierarchical hematite/silica nanocomposites. Use additives and chemical functionality in the hydrogel matrix to control iron oxidation state and thereby phases of iron oxides.

Grow iron oxide-silica nanocomposites on a substrate to allow thermal and electric property measurement.

ACKNOWLEDGEMENTS

National Science Foundation Graduate Research Program IGERT Program in Materials for a Sustainable Future **CCMR Shared Facilities** Society of Women Engineers

