

Energy for Smart Garments

- The collaborative field of smart textiles operates between design and engineering, with applications in bio-medicine, the military, space suits and everyday garments
- E-textiles (electronic textiles) need energy in order to operate. This work describes the fabrication of a textile supercapacitor (electrochemical double layer capacitor) as a non-toxic, flexible, and integrated solution.

Electrochemical Double Layer Capacitors

- Electrical Energy Storage, safe, non-toxic, charges and discharges in seconds, 95% efficient, can be made flexible
- 4 main components: electrode, current collector, separator,

Energy is stored by adsorbing/attracting counter ions to the charged surface of the electrode material creating a "double layer charge."

that make up

electrode

Diffusion of ions into porous carbon network

Double Layer formation between carbon material and solvated counter ions

Energy Textile "Fabrication"

Screen printing is used to impregnate activated carbon to textile structures, including woven and knitted cotton, polyester and carbon fiber.

<u>Knitting</u> is a technique for intertwining different materials (yarns) together to create fabrics. In our case, we knit carbon fiber electrodes in a basic weft knit.

Energy Textiles: A Multidisciplinary Approach to Wearable Energy Storage

Department of Materials Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University, Philadelphia PA, USA

