Thrifty Tracking: Smooth and Accurate Online GPS Tracking with Low Uplink Utilization

Troy Hernandez, James Biagioni, Jakob Eriksson University of Illinois at Chicago

Motivation

- GPS tracking can consume considerable bandwidth
- Location accuracy vs. data usage optimization needed.

Main Contributions

- An end-to-end framework improving efficiency of GPS
- 46 tracking methods evaluated on 1,200 hours of data.
- Billing policies for data usage on AT&T's network analyzed.

Architecture 1. actual location over time, GPS reports 5. continuous location trace output feedback optimal noise filter extrapolator smoother Same code server-side wireless annotator sampler extrapolator transfer device-side trace-thinning server-side finish 4. location trace 3. reduced-rate, 2. clean trace with after extrapolation sampled trace added annotations

Result of time-interval sampling. Interval is 4 time steps.

Constant velocity extrapolation.

Iterative smoothing: Extrapolation (blue), smoothed trajectories (red, green).

Extrapolator Sampler	Location	Velocity	Acceleration	Angular Velocity
Distance Error	3.9	0.7	0.9	0.8
Budget	5.5	0.8	1.2	1.1
Time Change	5.1	1.3	1.5	1.7
Time, Bearing & Location Change	4.5	4.1	4.4	4.2
Time & Location Change	4.3	5.0	6.2	3.6
Bearing Change	53.8	70.7	1125.3	20.9
Speed Change	16.7	12.1	14.2	10.2
Location Change	3.7	18.7	179.9	5.5
Acceleration Change	29.2	19.6	70.4	51.6
Time & Bearing Change	6.2	2.8	5.4	5.2
Time & Speed Change	5.0	1.2	6.3	2.1

Comparison of Sampling Rules and Extrapolation Methods

OpenStreetMap (OSM) data at 25m threshold. Values represent error incurred per second of additional transmission interval. Distance-based error sampler and the velocity-based extrapolators performed best.

Distance Error Sampling

Shuttle data: velocity/link-based extrapolation performs best with low/high error allowance; respectively.

UIC Bits Networked
UNIVERSITY OF ILLINOIS Systems Laboratory

COLLEGE OF ENGINEERING