
Eikonal Equation

The Eikonal equation (above) has applications in optimal 
control, path planning, computer vision, and interface 
tracking. 

The Fast Marching Method is a 
computational method for solving 
the Eikonal equation that takes 
advantage of the fact that 
boundary data propagates along 
characteristics. By iteratively 
sweeping through the data in a 
specific order, information is 
propagated along all characteristic 
directions.   

The Future of Computing

Curse of Dimensionality

Often, the types of problems computational 
scientists can study are limited by computational 
resources. Parallel computing offers a tool for 
approaching previously out-of-reach problems. In 
order to take full advantage of parallel computer 
architecture, however, software must follow suit. 

The Eikonal equation has applications in which the 
state space can be large. Large dimensional 
problems lead to prohibitively huge computations. 
We present a parallel method that does not plateau 
at a large number of threads. This can decrease 
computational time by orders of magnitude.

In order to solve a problem numerically, the 
domain must first be discretized. Then a 
numerical solution is constructed on the 
discrete grid nodes.

The 'Curse of Dimensionality' refers to the 
fact that as the dimension of a problem 
increases, the number of grid nodes, and thus 
the number of computations, increases 
exponentially.

The diagrams at right illustrate this. Shown is 
a one, two, and three dimensional domain 
[0,1] in each direction with a .1 spacing 
between grid nodes. The number of points 
required to describe the domain quickly 
balloons.

Parallel Method

Previously, the fast sweeping method was parallelized by 
computing each ordering in parallel. This limits the speedup 
drastically (only four threads can be used in 2D).  Our 
method utilizes an alternate ordering that allows 
parallelization within each sweep.

The computation of the solution uses the standard 5-point 
stencil. When we sweep along a diagonal, all of the points on 
the stencil are independent of the other nodes along the 
diagonal. We can compute all of these nodes in parallel. This 
allows for a large number of threads to be used 
simultaneously.
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In three dimensions, 
nodes in a plane are 
independent. Parallel 
load sharing is shown 
in the illustration 
(below right). 
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Below is a chart estimating the amount of time to 
solve a modest problem (~100 operations per grid 
node, 200 nodes in each direction) in N-dimensional 
Euclidean space on a standard single core desktop 
computer.

The problem becomes prohibitively large very quickly 
when the dimension of a problem is increased.

Introduction

In the recent history of computing, clock speed has been 
increasing at an incredible rate. This steady increase in 
computation power (Moore's Law) has held true until the last 
few years.  

Some problems are simple to parallelize; the tasks can simply 
be divided and solved simultaneously by the available 
processors (as above). Others require more clever thinking. 
Imagine approaching the problem above if all squares had to be 
completed before the star tasks could be started. The best 
algorithm may not be obvious. The method we present falls 
into the latter category. 

  

In two dimensions, there are four characteristic directions, 
and therefore, four specific sweeping orderings. The 
example below shows how each ordering propagates 
information in a specific direction, and with iteration, will 
produce a solution across the whole domain. 

Iteration 1

Iteration 2

Example problem 2: 
distance from a random 
set of points in 3D domain. 

Conclusion:  We present an 
algorithm for solving the Eikonal 
equation that has ideal theoretical 
parallel speedup O(N/p). We 
validate the method and provide 
results that show our method 
approaches ideal parallel speedup 
in the limit of large N.     

Example problem 1: 
distance from center 
with spherical obstacles.. 

Tasks
Processor 1

Processor 2

Processor 3

Processor 4

Since physical limitations are prohibiting clock speed from 
increasing much further, new technology has arisen. Parallel 
computing is the next logical step in increasing computational 
power.

In order to utilize parallel computation, software must be 
designed accordingly. The basis of parallel computing is to 
divide the work into tasks (the shapes below) and distribute 
them amongst the available processors.  
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Results

Our results and a parallel 
benchmark (method by 
Zhao  ) were tested on a 
large shared memory 
parallel machine. 

The results show superior 
speedup. As the problem 
size becomes large, the 
speedup approaches the 
ideal case. The 
benchmark method 
plateaus when the thread 
limit is reached.

 Even on a modest (32 
core) shared memory 
machine, we can reduce 
computational time by 
over one order of 
magnitude.  
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