
Eikonal Equation

The Eikonal equation (above) has applications in optimal
control, path planning, computer vision, and interface
tracking.

The Fast Marching Method is a
computational method for solving
the Eikonal equation that takes
advantage of the fact that
boundary data propagates along
characteristics. By iteratively
sweeping through the data in a
specific order, information is
propagated along all characteristic
directions.

The Future of Computing

Curse of Dimensionality

Often, the types of problems computational
scientists can study are limited by computational
resources. Parallel computing offers a tool for
approaching previously out-of-reach problems. In
order to take full advantage of parallel computer
architecture, however, software must follow suit.

The Eikonal equation has applications in which the
state space can be large. Large dimensional
problems lead to prohibitively huge computations.
We present a parallel method that does not plateau
at a large number of threads. This can decrease
computational time by orders of magnitude.

In order to solve a problem numerically, the
domain must first be discretized. Then a
numerical solution is constructed on the
discrete grid nodes.

The 'Curse of Dimensionality' refers to the
fact that as the dimension of a problem
increases, the number of grid nodes, and thus
the number of computations, increases
exponentially.

The diagrams at right illustrate this. Shown is
a one, two, and three dimensional domain
[0,1] in each direction with a .1 spacing
between grid nodes. The number of points
required to describe the domain quickly
balloons.

Parallel Method

Previously, the fast sweeping method was parallelized by
computing each ordering in parallel. This limits the speedup
drastically (only four threads can be used in 2D). Our
method utilizes an alternate ordering that allows
parallelization within each sweep.

The computation of the solution uses the standard 5-point
stencil. When we sweep along a diagonal, all of the points on
the stencil are independent of the other nodes along the
diagonal. We can compute all of these nodes in parallel. This
allows for a large number of threads to be used
simultaneously.

1D

2D

3D

In three dimensions,
nodes in a plane are
independent. Parallel
load sharing is shown
in the illustration
(below right).

of
nodes

N time (s) about as much time as:

1
2
3
4
5
6
8
11

200
4e4
8e6
16e8
3.2e11
6.4e13
2.6e18
2e25

4e-6
9e-4
.2
30
7000
1e6
6e10
4e17

Light transiting 1km
Camera shutter
A human eye blinking
Stoplight cycle
The movie Jurassic Park
Hiking the JMT
Sequoia lifespan
Age of the Universe

Below is a chart estimating the amount of time to
solve a modest problem (~100 operations per grid
node, 200 nodes in each direction) in N-dimensional
Euclidean space on a standard single core desktop
computer.

The problem becomes prohibitively large very quickly
when the dimension of a problem is increased.

Introduction

In the recent history of computing, clock speed has been
increasing at an incredible rate. This steady increase in
computation power (Moore's Law) has held true until the last
few years.

Some problems are simple to parallelize; the tasks can simply
be divided and solved simultaneously by the available
processors (as above). Others require more clever thinking.
Imagine approaching the problem above if all squares had to be
completed before the star tasks could be started. The best
algorithm may not be obvious. The method we present falls
into the latter category.

In two dimensions, there are four characteristic directions,
and therefore, four specific sweeping orderings. The
example below shows how each ordering propagates
information in a specific direction, and with iteration, will
produce a solution across the whole domain.

Iteration 1

Iteration 2

Example problem 2:
distance from a random
set of points in 3D domain.

Conclusion: We present an
algorithm for solving the Eikonal
equation that has ideal theoretical
parallel speedup O(N/p). We
validate the method and provide
results that show our method
approaches ideal parallel speedup
in the limit of large N.

Example problem 1:
distance from center
with spherical obstacles..

Tasks
Processor 1

Processor 2

Processor 3

Processor 4

Since physical limitations are prohibiting clock speed from
increasing much further, new technology has arisen. Parallel
computing is the next logical step in increasing computational
power.

In order to utilize parallel computation, software must be
designed accordingly. The basis of parallel computing is to
divide the work into tasks (the shapes below) and distribute
them amongst the available processors.

Detrixhe, M., Min, C., & Gibou, F. (2011). A Parallel Fast Sweeping Method for the Eikonal Equation

Zhao, H. (2007). Parallel Algorithms For the Fast Sweeping Method. Journal of Computational Mathematics, 25(4), 421-429.

1

2

Mitigating the Curse of Dimensionality: A Highly Parallel Fast Sweeping Method

Miles Detrixhe, Frederic Gibou, Chohong Min
Department of Mechanical Engineering, University of California Santa Barbara

Results

Our results and a parallel
benchmark (method by
Zhao) were tested on a
large shared memory
parallel machine.

The results show superior
speedup. As the problem
size becomes large, the
speedup approaches the
ideal case. The
benchmark method
plateaus when the thread
limit is reached.

 Even on a modest (32
core) shared memory
machine, we can reduce
computational time by
over one order of
magnitude.

2

