Testing Theories of Investor Behavior Using Neural Data Cary Frydman¹, Nicholas Barberis², Colin Camerer^{1,3}, Peter Bossaerts^{1,3} & Antonio Rangel^{1,3} ¹Division of Humanities and Social Sciences, Caltech ³Computation and Neural Systems, Caltech

²Yale School of Management

Introduction

A growing body of research suggests investors make suboptimal financial decisions [1]

One prominent example is the disposition effect: investors tend to sell more stocks that have gone in up value than stocks that have gone down in value, leading to lower average profits [2]

Realization Utility (RU) can explain the disposition effect: subjects derive a positive hedonic impact from the act of selling a stock at a gain [3]

We use fMRI to test the key assumption of this theory because it is difficult to test using only behavioral experiments or data from the field

Hypotheses

- 1. Subjects will exhibit a disposition effect
- 2. At the time of decision, the vmPFC and vSt will encode the capital gain of the stock (decision value of selling)
- 3. Subjects with stronger vmPFC signal in response to a capital gain will exhibit a greater disposition effect
- 4. At the moment of selling a capital gain, there will be increased activity in the nucleus accumbens (RU signal)

Methods

Subjects asked to trade in an experimental stock market while in the scanner, paid according to trading performance

Three stocks: A, B & C, each of which followed the same stochastic process, known to the subject

Subjects could hold a max of 1 share and a min of 0 shares

In each trial (216 total), subjects saw a "price update" screen followed by a "decision" screen

- Price update: new information displayed
- Decision: no new information, decision only

Stock B: UP \$15--->\$115 Purchase price: \$100

STOCK A price: \$105 Purchase price: \$100 SELL? Available cash: \$50

Optimal Strategy

 $LORS = \log \frac{b_{t+1}(good \mid z)}{d \mid z}$ $Pr(z \mid good) * [0.8 * b_t(good) + 0.2 * b_t(bad)]$ $Pr(z | bad) * [0.8 * b_t(bad) + 0.2 * b_t(good)]$ $_{1}(bad \mid z)$

Optimal strategy: sell (or not buy) when LORS<0, buy or hold otherwise. This leads to the *opposite* of a disposition effect.

Imaging Results

R1. vSt and vmPFC encode net capital gain at decision

 $BOLD = \alpha + \beta_1 x_1 + \beta_2 (\text{price-cost}) * x_1 + \beta_3 (bayesian) * x_1 + \beta_4 x_2 + \dots + \beta_k x_k + e$ $x_1 :=$ indicator of sell opportunity

Conclusions

Behaviorally, we find that subjects exhibit a large disposition effect, which is strongly suboptimal in our experiment

The neural data are consistent with the realization utility hypothesis [3]

The vmPFC encodes capital gain (decision value of selling)

This signal is stronger for subjects who realize more gains

The NAcc exhibits increased activity when subjects realize a gain, relative to holding it

Precise control over economic information coupled with neuroimaging allows us to:

- Quantify suboptimal behavior
- Test new economic theories

Obtain data central to a behavioral economic theory that is difficult to acquire otherwise

References

- Barberis, N. & Richard Thaler, 2003, A survey of behavioral finance, in Handbook of the economics of finance (Elsevier)
- 2. Odean. Terrance. 1998. Are investors reluctant to realize their losses?, The Journal of Finance 53, 1775-1798
- 3. Barberis, N. and Wei Xiong, Realization Utility, Journal of Financial Economics, forthcoming

Acknowledgements

We are grateful to the Moore Foundation (AR & CC) and the National Science Foundation (AR, CC, & CF) for their generous financial support.

Correspondence

Please send correspondences to cfrydman@caltech.edu