RECOGNIZING HUMAN FACIAL EMOTIONS IN VIDEO: A PSYCHOLOGICALLY-INSPIRED FUSION MODEL ALBERT CRUZ AND BIR BHANU - {ACRUZ, BHANU}@EE.UCR.EDU Center Research in Intelligent Systems **CENTER FOR RESEARCH IN INTELLIGENT SYSTEMS, UNIVERSITY OF CALIFORNIA, RIVERSIDE, CA 92521**

APPLICATIONS AND MOTIVATION

• Applications in medicine (treatment of Asperger's), video games (Xbox Kinect), human-computer interaction (intelligent tutori systems) and affective computing (embodied agents).

- Affective Computing: TI emergent field where computers interpret you emotion and respond in kind with emotion of the own. Example online [3]
- Technical Challenges to State-of-the-Art:
- Can not align faces with extreme pose or occlusion.
- Systems process the face at each frame. T does not scale to application (not fast enoug for real-time interaction).
- Psych-Inspired Motivation: Humans perform well at this task so a system needs to emulate behavior of the human visual system.
- **Project Goal:** Design a system that can recognize emotions, properly align faces desp facial dynamics and emulate processes in the human visual system to improve performance.

VISION AND ATTENTION THEORY SAMPLING

ing he he ir ir 3].	 The HVS selectively processes a sc 50ms-1s latency inversely proportion change in visual information. The pause between processing a ne should be inversely proportional to the of facial motion. An idle subject needs a single fram describe the expression (A) where actively expressing subject needs frames (B). 			
his gh				
m te	Video Slices	Temporal Features	Compute Frequency	
spite e			F(w) 10 10 10 10 10 10 10 10 10 10	

AUDIO/VISUAL EMOTION CHALLENGE 2011 RESULTS

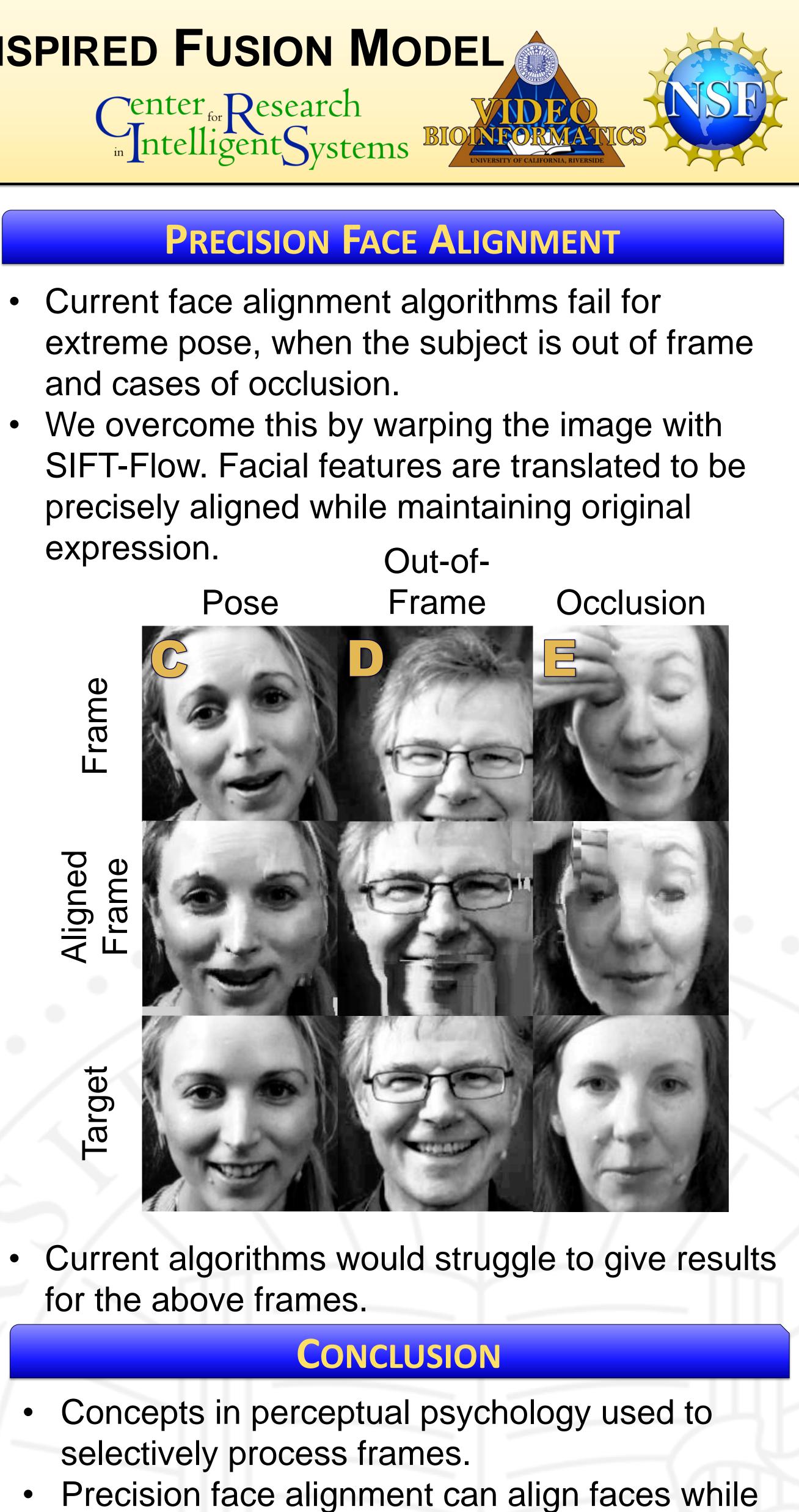
- Proposed approach was submitted to the Audio/Visual Emotion Challenge 2011. Improves results by an average of 10% over Schuller et al. [1].

Valence

References:

[1] Schuller et al. AVEC 2011 – the first international audio/visual emotion This work was supported in part by NSF challenge. In Proc. Affective Computing and Intelligent Interaction, 2011. grant 0727129 and NSF IGERT: Video [2] M. Glodek et al. Multiple classifier systems for the classification of audio-visual **Bioinformatics Grant DGE 0903667.** emotional states. In Proc. Affective Computing and Intelligent Interaction, 2011. Contents and information do not reflect the [3] G. McKeown. Chatting with a virtual agent: The semaine project character spike. Website, February 2011. <u>http://www.youtube.com/watch?v=6KZc6e_EuCg</u>. position or policy of the U.S. Government.

- ne with a to the
- frame amount
- to an any



- and cases of occlusion.
- expression.

ש

for the above frames.

- selectively process frames.
- maintaining of facial expressions.

Acknowledgement: